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Introduction Deep Reinforcement Learning: Means of Adaptive Control
Effective treatment of complex diseases, such as sepsis, * Machine learning/artificial intelligence approach to T \ ) Neutrophi
cancer, diabetes, and chronic inflammation require “playing games” => e.g. Pong, Lunar Lander, AlphaGo - h?“_"
correspondingly complex control strategies involving * Train a policy that consists of an optimal response/ (e J-l r[ = T_ngi‘_ ~(cesr ) Neutrophil
multiple targets/levers, the configurations of which control action based on the observed state of a system T_( e e | L L )y G
must vary both from patient to patient as well as during  ° lterative learning process => system calculates optimality (o — o
the time course of a single patient. We propose that the of an action based a defined learning objective LS () ) S
use of deep reinforcement learning (DRL), on * Reinforcement Learning => Uses a matrix/lookup table to h—‘ M=t ' —
simulations of pathophysiological processes can guide calcglate. ?ffeCt of actions => Limited capability/ - 3 o) || ¢ ; [ h S e )]
the development of multi-modal and adaptive ippl'cib'l't}' to complex Systems | ) I —
therapeutic regimens. We present an initial example of * Deep Reu.wforc?ment.Learmng =>Trains a neural
DRL to identify an adaptive control policy for controlling network to |d.er11(t|fy Op.tlm,?l polloc.y - DRL Agent Li’d e THo cen —
the Innate Immune Response ABM (lIRABM) as a proxy . Wh.at makes It fada.p?:lve: specific se.quence. of c:om.:rols T S e ol acvates —
model of sepsis. This work demonstrates a path forward Zj;]e;fb:csggnzn lii\/::]v;duzIlrtsizztlz:notgjéer\c;’;c;rz;zl|cy > _: )
in terms of controlling complex disease while fully . Requires a simslation Ef the system to train on => T e
leveraging advanced machine learning/Al methods. _ifferentation

Innate Immune Response ABM as a proxy for sepsis

Training and Learning Result: A Robust Policy

Training Conditions of the DRL Agent: 0
* Fully Observable System: 21 variable/grid :jggg
point x 101x101 grid every time step (6 mins) 6000 |
* Discrete Action Space for +/- 14 cytokines ~8000
per Time Step (6 minutes sim time) 1.0

* Reward Function: |
e Terminal = Life vs Death

Test of Generalizability: Since DRL Agent trained only on 1 parameterization,

is learned policy translatable to other initial conditions

 Tested over 500 different initial conditions, batched 100/10% mortality
intervals, 500 stochastic replicates/initial condition

Results: Of 500 conditions, 92% had 0% mortality, 7.8% had reduced

mortality (ave = 87% reduction), 1 condition unchanged, none worsened
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Result: Adaptive Control Future Directions

Current Finding: DRL can be used to discover a Robust

Control Policy for a complex, stochastic system

Next Steps:

 Modify Observation and Action space to define
minimally sufficient intervals, targets and effects

Principle of Adaptive Control = Different trajectories .. 0.250 0.25

require different sequence of control actions 0.000{ [t | | o
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Panels show implemented actions in terms of 025 0250 025 e Current limitation of DRL = Interpretability => Extract

degree of cytokine manipulation
* Action Space is biologically plausible:
 Test 1: Oscillating Containment of Nosomical

0-0001 o2t W biological insight from arrived at control policies, e.g. is
N there an “optimal trajectory” through multi-
dimensional disease space
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Test 2: Prolongation ot control w larger injuries, Time step Time step Time step modal chemo vs evolving resistance, wound healing in

early suppression and late augmentation of PAF (d) PAF (e) IL-1 (f) IFNy face of evolving wound microbiota)



